Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Trials ; 22(1): 127, 2021 Feb 10.
Article in English | MEDLINE | ID: covidwho-1629960

ABSTRACT

OBJECTIVES: The objective of the study is to measure the efficacy of ionic-iodine polymer complex [1] for clinical and radiological improvement in coronavirus disease 2019 (COVID-19) patients. TRIAL DESIGN: The trial will be closed label, randomized and placebo-controlled with a 1:1:1:1 allocation ratio and superiority framework. PARTICIPANTS: All PCR confirmed COVID-19 adult patients including non-pregnant females, with mild to moderate disease, will be enrolled from Shaikh Zayed Post-Graduate Medical Complex, Ali Clinic and Doctors Lounge in Lahore (Pakistan). Patients with any pre-existing chronic illness will be excluded from the study. INTERVENTION AND COMPARATOR: In this multi-armed study ionic-iodine polymer complex with 200 mg of elemental iodine will be given using three formulations to evaluate efficacy. Patients will be receiving either encapsulated iodine complex of 200 mg (arm A), iodine complex syrup form 40 ml (arm B), iodine complex throat spray of 2 puffs (arm C) or empty capsule (arm D) as placebo; all three times a day. All the 4 arms will be receiving standard care as per version 3.0 of the clinical management guidelines for COVID-19 established by the Ministry of National Health Services of Pakistan. MAIN OUTCOMES: Primary outcomes will be viral clearance with radiological and clinical improvement. SARS-CoV-2 RT-PCR and HRCT chest scans will be done on the admission day and then after every fourth day for 12 days or till the symptoms are resolved. RT-PCR will only be shown as positive or negative while HRCT chest scoring will be done depending on the area and severity of lung involvement [2]. Time taken for the alleviation of symptoms will be calculated by the number of days the patient remained symptomatic. 30-day mortality will be considered as a secondary outcome. RANDOMISATION: Stratification for initial COVID-19 status (or days from initial symptoms as a proxy), age groups, gender, baseline severity of symptoms and co-morbidities will be used to ensure that the study arms remain balanced in size for the 1:1:1:1 allocation ratio. Randomization will be done using the lottery method. As patients are being admitted at different times, they will be recruited after obtaining their voluntary written informed consent following all standard protocols of the infection, control and disinfection. BLINDING (MASKING): This is a quadruple (participants, care providers, investigators and outcomes assessors) blinded study where only the study's Primary Investigator will have information about the arms and their interventions. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): 200 patients will be randomized into four groups with three experimental and one placebo arm. TRIAL STATUS: Protocol Version Number is 2.3 and it is approved from IRB Shaikh Zayed Hospital with ID SZMC/IRB/Internal0056/2020 on July 14th, 2020. The recruitment is in progress. It was started on July 30, 2020, and the estimated end date for the trial is August 15, 2021. TRIAL REGISTRATION: Clinical Trial has been retrospectively registered on www.clinicaltrials.gov with registration ID NCT04473261 dated July 16, 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). With the intention of expediting dissemination of this trial, the conventional formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines.


Subject(s)
COVID-19 Drug Treatment , Iodine Compounds/administration & dosage , Polymers/administration & dosage , SARS-CoV-2/genetics , Severity of Illness Index , Adult , COVID-19/epidemiology , COVID-19/mortality , Capsules , Female , Humans , Male , Oral Sprays , Pakistan/epidemiology , Patient Admission , Randomized Controlled Trials as Topic , Reverse Transcriptase Polymerase Chain Reaction , Treatment Outcome
2.
Front Mol Biosci ; 8: 670815, 2021.
Article in English | MEDLINE | ID: covidwho-1278417

ABSTRACT

The 2019-2020 winter was marked by the emergence of a new coronavirus (SARS-CoV-2) related disease (COVID-19), which started in Wuhan, China. Its high human-to-human transmission ability led to a worldwide spread within few weeks and has caused substantial human loss. Mechanical antiviral control approach, drug repositioning, and use of COVID-19 convalescent plasmas (CPs) were the first line strategies utilized to mitigate the viral spread, yet insufficient. The urgent need to contain this deadly pandemic has led searchers and pharmaceutical companies to develop vaccines. However, not all vaccines manufactured are safe. Besides, an alternative and effective treatment option for such an infectious disease would include pure anti-viral neutralizing monoclonal antibodies (NmAbs), which can block the virus at specific molecular targets from entering cells by inhibiting virus-cell structural complex formation, with more safety and efficiency than the CP. Indeed, there is a lot of molecular evidence about the protector effect and the use of molecular feature-based NmAbs as promising therapeutics to contain COVID-19. Thus, from the scientific publication database screening, we here retrieved antibody-related papers and summarized the repertory of characterized NmAbs against SARS-CoV-2, their molecular neutralization mechanisms, and their immunotherapeutic pros and cons. About 500 anti-SARS-CoV-2 NmAbs, characterized through competitive binding assays and neutralization efficacy, were reported at the writing time (January 2021). All NmAbs bind respectively to SARS-CoV-2 S and exhibit high molecular neutralizing effects against wild-type and/or pseudotyped virus. Overall, we defined six NmAb groups blocking SARS-CoV-2 through different molecular neutralization mechanisms, from which five potential neutralization sites on SARS-CoV-2 S protein are described. Therefore, more efforts are needed to develop NmAbs-based cocktails to mitigate COVID-19.

3.
Bioinform Biol Insights ; 15: 11779322211021430, 2021.
Article in English | MEDLINE | ID: covidwho-1262480

ABSTRACT

BACKGROUND: A recent COVID-19 pandemic has resulted in a large death toll rate globally and even no cure or vaccine has been successfully employed to combat this disease. Patients have been reported with multi-organ dysfunction along with acute respiratory distress syndrome which implies a critical situation for patients and made them difficult to breathe and survive. Moreover, pathology of COVID-19 is also related to cytokine storm which indicates the elevated levels of interleukin (IL)-1, IL-6, IL-12, and IL-18 along with tumor necrosis factor (TNF)-α. Among them, the proinflammatory cytokine IL-6 has been reported to be induced via binding of severe acute respiratory syndrome coronavirus 2 (SARS)-CoV-2 to the host receptors. METHODOLOGY: Interleukin-6 blockade has been proposed to constitute novel therapeutics against COVID-19. Thus, in this study, 15 phytocompounds with known antiviral activity have been subjected to test for their inhibitory effect on IL-6. Based on the affinity prediction, top 3 compounds (isoorientin, lupeol, and andrographolide) with best scores were selected for 50 ns molecular dynamics simulation and MMGB/PBSA binding free energy analysis. RESULTS: Three phytocompounds including isoorientin, lupeol, and andrographolide have shown strong interactions with the targeted protein IL-6 with least binding energies (-7.1 to -7.7 kcal/mol). Drug-likeness and ADMET profiles of prioritized phytocompounds are also very prominsing and can be further tested to be potential IL-6 blockers and thus benficial for COVID-19 treatment. The moelcular dynamics simulation couple with MMGB/PBSA binding free energy estimation validated conformational stability of the ligands and stronger intermolecular binding. The mean RMSD of the complexes is as: IL6-isoorientin complex (3.97 Å ± 0.77), IL6-lupeol (3.97 Å ± 0.76), and IL6-andrographolide complex (3.96 Å ± 0.77). In addition, the stability observation was affirmed by compounds mean RMSD: isoorientin (0.72 Å ± 0.32), lupeol (mean 0.38 Å ± 0.08), and andrographolide (1.09 Å ± 0.49). A similar strong agreement on systems stability was unraveled by MMGB/PBSA that found net binding net ~ -20 kcal/mol for the complexes dominated by van der Waal interaction energy. CONCLUSION: It has been predicted that proposing potential IL-6 inhibitors with less side effects can help critical COVID-19 patients because it may control the cytokine storm, a major responsible factor of its pathogenesis. In this study, 3 potential phytocompounds have been proposed to have inhibitory effect on IL-6 that can be tested as potential therapeutic options against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL